In a nutshell: The heat equation in one dimension

Given a conduction coefficient α , two spatial boundary points [a, b] and two time boundaries $[t_0, t_f]$, and functions that give the boundary values at time t, $u_a(t)$ and $u_b(t)$ as well as an initial value $u_0(x)$ at time t_0 .

Parameters:

- n_x The number of sub-intervals into which [a, b] will be divided.
- n_t The number of sub-intervals into which time will be divided where $n_t \ge \left| \frac{4\alpha (t_f t_0)}{h^2} \right|$.
- 1. Set $h \leftarrow \frac{b-a}{n_x}$ and $x_k \leftarrow a+kh$ noting that $x_{n_x} = b$.
- 2. Set $\Delta t \leftarrow \frac{t_f t_0}{n_t}$ and $t_\ell \leftarrow t_0 + \ell \Delta t$.
- 3. For *k* going from 0 to n_x , set $u_{k,0} \leftarrow u_0(x_k)$.
- 4. For ℓ going from 0 to $n_t 1$,
 - a. Set $u_{0,\ell+1} \leftarrow u_a(t_{\ell+1})$ and $u_{n_x,\ell+1} \leftarrow u_b(t_{\ell+1})$, and
 - b. for k going from 1 to $n_x 1$, set $u_{k,\ell+1} \leftarrow u_{k,\ell} + \alpha \Delta t \frac{u_{k-1,\ell} 2u_{k,\ell} + u_{k+1,\ell}}{h^2}$.