In a nutshell: The heat equation in one dimension

Given a conduction coefficient α, two spatial boundary points [a, b] and two time boundaries $\left[t_{0}, t_{f}\right.$], and functions that give the boundary values at time $t, u_{a}(t)$ and $u_{b}(t)$ as well as an initial value $u_{0}(x)$ at time t_{0}.

Parameters:
$n_{x} \quad$ The number of sub-intervals into which $[a, b]$ will be divided.
$n_{t} \quad$ The number of sub-intervals into which time will be divided where $n_{t} \geq\left\lceil\frac{4 \alpha\left(t_{f}-t_{0}\right)}{h^{2}}\right\rceil$.

1. Set $h \leftarrow \frac{b-a}{n_{x}}$ and $x_{k} \leftarrow a+k h$ noting that $x_{n_{x}}=b$.
2. Set $\Delta t \leftarrow \frac{t_{f}-t_{0}}{n_{t}}$ and $t_{\ell} \leftarrow t_{0}+\ell \Delta t$.
3. For k going from 0 to n_{x}, set $u_{k, 0} \leftarrow u_{0}\left(x_{k}\right)$.
4. For ℓ going from 0 to $n_{t}-1$,
a. Set $u_{0, \ell+1} \leftarrow u_{a}\left(t_{\ell+1}\right)$ and $u_{n_{x}, \ell+1} \leftarrow u_{b}\left(t_{\ell+1}\right)$, and
b. for k going from 1 to $n_{x}-1$, set $u_{k, \ell+1} \leftarrow u_{k, \ell}+\alpha \Delta t \frac{u_{k-1, \ell}-2 u_{k, \ell}+u_{k+1, \ell}}{h^{2}}$.
